
26 The Delphi Magazine Issue 51

Remote Monitoring
by Paul Warren

I have noticed a growing interest
in remote monitoring technolo-

gies among my industrial clients.
This is for good reason, since
remote monitoring is a great
labour saver. Recently, I was asked
whether it was possible to monitor
the output of an expensive instru-
ment control and data acquisition
package on an intranet.

Since there was no source code
and no built-in web compatibility I
was sceptical. I suggested upgrad-
ing the software to a version that
provided HTML output, or possi-
bly using a web camera to watch
the screen (a solution I have actu-
ally seen implemented). The client
wasn’t interested in either
suggestion, mainly because of the
costs.

Thankfully, I didn’t forget the
question and a solution came to me
while I was working on a
completely different project.

Web Animation
There is a poor man’s way of
creating animations for the web,
called server push, where a web
application sends sequential
output to the client browser.
Closely related to server push is a
technique called client pull, where

the client periodically requests
updates.

It was while investigating these
two techniques that I realized it
may be possible to monitor all
kinds of foreign output. Imagine if
you could get your data acquisition
application to generously draw
itself to a bitmap that you could
then pass to the client browser by
either server push or client pull.
Potentially, we have the solution.
But will it work in practice?

Server push seems to hold little
promise for remote monitoring,
since the server application needs

to know when to shut itself down.
With client pull, on the other hand,
the browser controls the server
application, which is just what we
need for remote monitoring. For
that reason I’ll not discuss server
push any further in this article.

Application Draw Thyself
Every visible window has a device
context, a canvas in Delphi
terminology. The device context is
the window’s visual representa-
tion. In order to get at this device
context, we first need a handle to
the window. The Windows API

hForeignWin := FindWindow('System Monitor', 'System Monitor');
try
wDC := GetDC(hForeignWin);
// copy DC here

finally
ReleaseDC(hForeignWin, wDC);

end;

Bitmap := TBitmap.Create;
with Bitmap do
try
hForeignWin := FindWindow('System Monitor', 'System Monitor');
try
GetClientRect(hForeignWin, SrcRect);
Width := SrcRect.Right;
Height := SrcRect.Bottom;
wDC := GetDC(hForeignWin);
BitBlt(Canvas.Handle, 0, 0, Width, Height, wDC, 0, 0, SRCCOPY);

finally
ReleaseDC(hForeignWin, wDC);

end;
finally
Bitmap.Free;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

program CliePull;
{$APPTYPE CONSOLE}
uses
SysUtils, Windows, Classes, Graphics, JPEG;

const
Head: array[0..26] of char =
'content-type: image/jpg'#13#10#13#10;

var
hForeignWin: THandle;
wDC: HDC;
SrcRect: TRect;
Bitmap: TBitmap;
AStream: TMemoryStream;
Buffer: array[0..8191] of Byte;
BytesToSend: Integer;

begin
Rewrite(Output);
FileWrite(TTextRec(Output).Handle, Head, SizeOf(Head));
Bitmap := TBitmap.Create;
with Bitmap do
try
hForeignWin :=
FindWindow('System Monitor', 'System Monitor');

try
SetForegroundWindow(hForeignWin);
RedrawWindow(hForeignWin, nil, 0,
RDW_INVALIDATE+RDW_UPDATENOW);

GetClientRect(hForeignWin, SrcRect);
Width := SrcRect.Right;
Height := SrcRect.Bottom;

wDC := GetDC(hForeignWin);
BitBlt(Canvas.Handle, 0, 0, Width, Height, wDC, 0, 0,
SRCCOPY);

with TJPEGImage.Create do
try
Assign(Bitmap);
AStream := TMemoryStream.Create;
try
SaveToStream(AStream);
AStream.Seek(soFromBeginning, 0);
while AStream.Position < AStream.Size do begin
BytesToSend :=
AStream.Read(Buffer, SizeOf(Buffer));

FileWrite(TTextRec(Output).Handle, Buffer,
BytesToSend);

end;
finally
AStream.Free;

end;
finally
Free;

end;
finally
ReleaseDC(hForeignWin, wDC);

end;
finally
Bitmap.Free;

end;
end.

➤ Listing 3

November 1999 The Delphi Magazine 27

function FindWindow returns a
handle to the window matching the
parameters. Assuming we can find
either the class type (using
Winsight), or the caption, obtain-
ing the handle is a relatively trivial
task.

Armed with a valid handle we
can obtain the device context (DC)
using either GetDC or GetWindowDC,
depending on whether we want the
entire area or just the client area.
Listing 1 shows the basic steps of
grabbing a DC for a window.

We now have to copy the DC so
that it can be saved to a file or
streamed to the client, whichever
is most convenient. There are a
number of Windows functions for
working with device contexts, but
the easiest way is to BitBlt the DC
to a Delphi-managed canvas.

Listing 2 shows the code to
create a TBitmap and BitBlt the DC
to it.

The bitmap has to be converted
to a JPEG before it can be used on
the intranet. Since a TJPEGImage has
a bitmap property, we can use the
Assign method to copy our bitmap
directly to the JPEG. It’s then a
simple matter to stream the JPEG
to the client.

The complete code is shown in
Listing 3. Note the use of the
FileWrite procedure, which allows
us to write blocks of data to the

standard output for greatly
improved performance.

You’ll notice I have used the Win-
dows system monitor for demon-
stration purposes, since it should
be available to everyone. Figure 1
shows my desktop with both the
system monitor and browser
together. The complete source is
available on this month’s disk,
along with a compiled version.

Enter HTML
Nowhere have I talked about or
implemented any form of anima-
tion. The HTML document in which
I’ll embed the link to this applica-
tion is the animation engine. By
including the META tag <META
http-equiv="Refresh" content=10>
in the HTML the client browser will
refresh the document automati-
cally every 10 seconds (in this
case). Listing 4 shows the HTML
for this simple test page.

Limitations
There are some limitations to this
technique. The window you are
trying to copy must be in the fore-
ground. To be certain it is I added

<HTML>
<HEAD><TITLE>Client Pull Demo</TITLE>
<META http-equiv="Refresh" content=10>
</HEAD>
<BODY>
<H1>Client Pull Demo</H1>
<! -Note you need to put the address of your server here>

</body>
</html>

➤ Figure 1

➤ Listing 4

the SetForegroundWindow call. This
means that the window being
copied will move to the front of all
other windows and grab the focus.
Anyone trying to work on the
server while this was happening
would soon be very annoyed. For
this reason you should only try
this on a server that is not being
actively used. In a corporate envi-
ronment where a process must be
monitored and where the alterna-
tives are expensive, it is quite
useful.

One other effect shows up when
a screen saver or other graphic
intensive program is in the fore-
ground. The window you are trying
to copy may not redraw itself
before the DC has been copied and
streamed to the client. A call to

RedrawWindow(
hForeignWin, nil, 0,
RDW_INVALIDATE+RDW_UPDATENOW);

seems to eliminate this problem by
forcing a repaint before returning.

Conclusions
There are many sophisticated
methods of remote monitoring,
but most are expensive in that they
require new software, hardware or
both. Using client pull and Delphi
you can easily monitor the output
of any visible window making
many remote monitoring tasks fea-
sible. It certainly satisfied the
aforementioned client, who can
now check the instrument output
via his intranet 24 hours a day, 7
days a week, from any location
with dial-up or cable access.

Paul Warren runs HomeGrown
Software Development in
Langley, British columbia, Canada
and can be contacted at
hg_soft@uniserve.com

	Web Animation
	Application Draw Thyself
	Enter HTML
	Limitations
	Conclusions

